MAT 0024 Ch 13 Factoring Review Worksheet Instructor: C. St.Denis
Page 1 of 4
Strategy for factoring polynomials:
Step 1. GCF: If the polynomial has a greatest common factor other than 1, then factor out the
greatest common factor.
Step 2. Binomials: If the polynomial has two terms (it is a binomial), then see if it is the difference
of two squares:
(
)
22
ba .
Remember if it is the sum of two squares, it will NOT factor.
Step 3. Trinomials: If the polynomial is a trinomial, then check to see if it is a perfect square
trinomial which will factor into the square of a binomial:
(
)
(
)
22
baorba + .
v If it is not a perfect square trinomial, use factoring by trial and error or the AC
method.
Step 4. Other polynomials: If it has more than three terms, try to factor it by grouping.
a. Group two terms together which can be factored further
b. Use the distributive property in reverse to factor out common terms
c. Write the factors as multiplication of binomials.
Step 5. Final check: See if any of the factors you have written can be factored further. If you have
overlooked a common factor, you can catch it here.
Remember the following properties:
Perfect Squares:
222
2)( bababa ++=+ and
222
2)( bababa +=
Difference of two squares: ))((
22
bababa +=
Sum of two squares:
22
ba + is NOT factorable
Factoring, among other benefits, helps us simplify division of polynomials such as:
2
4
2
x
x
Instead of trying to do the long division, let’s see if we can factor the numerator so we can cancel some
things out:
2
)2(
)2)(2(
2
4
2
+=
+
=
x
x
xx
x
x
v Strategy for factoring cbxax ++
2
by grouping (AC method):
a. Form the product ac
b. Find a pair of numbers whose product is ac and whose sum is b.
c. Rewrite the polynomial so that the middle term (bx) is written as the sum
of two terms whose coefficients are the two numbers found in step 2.
d. Factor by Grouping (as in step 4)
MAT 0024 Ch 13 Factoring Review Worksheet Instructor: C. St.Denis
Page 2 of 4
Example:
Description of steps:
)2)(2(2
)4(2
82
3
23
35
+
=
=
xxx
xx
xx
Step 1: Factor out greatest common factor )2(
3
x
Step 2: Determine if the remaining binomial is the difference of
two squares
Step 2: It is the difference of two squares
(skip steps 3-4)
Step 5: Can it be factored further? No
22
22
234
)3(3
)96(3
27183
=+
=+
xx
xxx
xxx
Step 1: Factor out greatest common factor )3(
2
x
Step 2: Determine if the remaining binomial is the difference of
two squares: NOT binomial.
Step 3: Determine if the remaining trinomial is a perfect square:
It seems to be
2
)3( x
Step 5: Can it be factored further? No
)12)(43(
)12)(4()12(3
)48()36(
4836
4116
2
2
2
=+
=++
=+
=+
aa
aaa
aaa
aaa
aa
Step 1: no GCF
Step 2: Not a binomial
Step 3: Not a perfect square; factor by AC method (or trial &
error).
a. Find the product of ac (24).
b. Find two numbers whose product is ac (24) and whose
sum is b (-11). The two numbers are -8 and -3.
c. Rewrite the trinomial so the middle term is the sum of
the two numbers found as coefficients.
Step 4: Factor by grouping.
Step 5: Cannot be factored further.
)8)(3(
)8(3)8(
)243()8(
2438
++
=+++
=+++
yx
yyx
yxxy
yxxy
Skip steps 1
-
3.
Step 4: Factor by grouping
a. group two terms together
b. find GCF of each group
c. Use distributive property to “pull out” the common
term.
d. Rewrite as product of two binomials
Step 5: Cannot be factored further
)14(2
282
23
345
++
=++
bbab
ababab
Step 1: Find GCF (
3
2ab )
Skip step 2 (not a binomial remaining)
Step 3-4: Not a perfect square and can’t be factored.
Step 5: Cannot be factored further.
)2)(3(
65
2
++
=++
xx
xx
Skip steps 1
-
Step 3: Not a perfect square, coefficient of first term is 1, so just
reverse FOIL:
a. First two terms are x and x
b. Last two terms have to multiply to be 6 and sum to be
5. The two numbers are 2 and 3.
c. Both signs need to be positive
Step 4: Check the OI term to make sure it’s correct. It is.
MAT 0024 Ch 13 Factoring Review Worksheet Instructor: C. St.Denis
Page 3 of 4
Factor the following polynomials using the strategy and examples above:
Polynomial:
Factored form:
abba 312
22
94
2
x
22
16yx
yxyxx 824
2
+
209
2
+ xx
4129
2
+ xx
23
8 xx
49
2
+x
xxx 31616
23
++
189
2
+ xx
6136
2
++ xx
MAT 0024 Ch 13 Factoring Review Worksheet Instructor: C. St.Denis
Page 4 of 4
232
2
+ xx
15225
2
xx
xxx 1293
23
+
283
2
+ xx
168
2
+ xx
22
374 yxyx +
yxxyx +
23
268
2
xx
234
2411 xxx +
433254
1426 yxyxyx +